Datasets
TABLE I. List of publicly available datasets for 3D-scene understanding, categories by data acquisition method, the content of the dataset, used hardware, data representation, and extent of available annotation classes. The digital version (.csv) of this table can be downloaded here. Declaration of data typ real-world (R), synthetic (S).
Nr. | Year | Name | Resource | Data type | Objects | Indoor sites | Urban (S) | Urban (D) | Industrial | Infrastructure / Rural | Panoramic cameras | Stereo camera | RGB-D | TLS | MLS | ALS | Aerial photogrammetry | IMU | GPS | RGB sequence | Depth sequence | Point cloud | 3D model | RGB | Intensity | Mesh | Normals | # Sem. classes | Object detection | Pose estimation | Shape classfication | Object tracking | Semantic segmentation | Instance sem. segmentation | PC registration | Scene reconstruction | Surface reconstruction | Volume reconstruction | SLAM | # Points | # Frames | # Scenes | # Scans |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2009 | Oakland 3-D | link | R | 1 | 1 | 1 | 5 | 1 | 1,6M | |||||||||||||||||||||||||||||||||
2 | 2011 | Ford Campus Vision and Lidar Data Set | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ||||||||||||||||||||||||||
3 | 2012 | KITTI stereo evaluation 2012 | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1,5K | 22 | ||||||||||||||||||||||
4 | 2013 | NYUv2 | link | R | 1 | 1 | 1 | 1 | 14 | 1 | 407,0K | 464 | |||||||||||||||||||||||||||||||
5 | 2013 | SUN3D | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 254 | 415 | ||||||||||||||||||||||||||||||
6 | 2013 | Sydney Urban Objects | link | R | 1 | 1 | 1 | 14 | 1 | 613 | |||||||||||||||||||||||||||||||||
7 | 2014 | Paris-rue-Madame database | link | R | 1 | 1 | 1 | 1 | 17 | 1 | 1 | 2,0M | 1 | 2 | |||||||||||||||||||||||||||||
8 | 2015 | iQmulus | link | R | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 300,0M | 10 | ||||||||||||||||||||||||||||||
9 | 2015 | NCTL Dataset | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 27 | ||||||||||||||||||||||||||||
10 | 2015 | SceneNet | link | S | 1 | 1 | 1 | 1 | 1 | 1 | 59 | ||||||||||||||||||||||||||||||||
11 | 2015 | ShapeNet | link | S | 1 | 1 | 1 | 270 | 1 | 1 | 1 | 51300 | |||||||||||||||||||||||||||||||
12 | 2015 | SUN RGB-D | link | R | 1 | 1 | 1 | 1 | 53 | 1 | 1 | 1 | 10,3K | 10335 | 10335 | ||||||||||||||||||||||||||||
13 | 2016 | ObjectNet3D | link | S | 1 | 1 | 100 | 1 | 1 | 1 | 1 | 90,1K | |||||||||||||||||||||||||||||||
14 | 2016 | Oxford RobotCar | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 20,0M | |||||||||||||||||||||||||||||||
15 | 2016 | SceneNet RGB-D | link | S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5,0M | 57 | 15000 | |||||||||||||||||||||||||
16 | 2016 | SceneNN | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 40 | 1 | 1 | 1 | 100 | 100 | |||||||||||||||||||||||||
17 | 2017 | 2D-3D-S Dataset | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | 1 | 1 | 1 | 1 | 695,9M | 70,5K | 7 | ||||||||||||||||||||||
18 | 2017 | Matterport3D | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 40 | 1 | 1 | 1 | 1 | 194,4K | 90 | 10800 | ||||||||||||||||||||||
19 | 2017 | Redwood | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | |||||||||||||||||||||||||||
20 | 2017 | S3DIS | link | R | 1 | 1 | 1 | 1 | 1 | 13 | 1 | 1 | 6 | 271 | |||||||||||||||||||||||||||||
21 | 2017 | Semantic3D | link | R | 1 | 1 | 1 | 1 | 1 | 9 | 1 | 1 | 1 | 4,0B | 30 | ||||||||||||||||||||||||||||
22 | 2018 | Paris-Lille-3D | link | R | 1 | 1 | 1 | 1 | 1 | 50 | 1 | 1 | 1 | 143,1M | 11 | 115 | |||||||||||||||||||||||||||
23 | 2018 | ScanNet V2 | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 20 | 1 | 1 | 1 | 1 | 1 | 1 | 2,5M | 707 | 1513 | ||||||||||||||||||||||
24 | 2018 | WHU-TLS dataset | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1,7B | 11 | 115 | ||||||||||||||||||||||||||||||
25 | 2019 | A*3D | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 39,2K | ||||||||||||||||||||||||||||||
26 | 2019 | Agroverse1 | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 17 | 1 | 1 | 1 | 6,6K | 113 | 324557 | ||||||||||||||||||||||||
27 | 2019 | ApolloScape | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 25 | 1 | 1 | 1 | 1 | 1 | 70,0K | 140,0K | |||||||||||||||||||||||
28 | 2019 | BLVD | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 120,0K | ||||||||||||||||||||||||||||
29 | 2019 | H3D | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 27,7K | 160 | 27721 | ||||||||||||||||||||||
30 | 2019 | Lyft Level 5 | link | R | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 170000 | |||||||||||||||||||||||||||||
31 | 2019 | PartNet | link | S | 1 | 1 | 1 | 24 | 1 | 1 | 1 | 26671 | |||||||||||||||||||||||||||||||
32 | 2019 | PreSIL | link | S | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 50,0K | ||||||||||||||||||||||||||||
33 | 2019 | Replica | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 88 | 1 | 1 | 18 | ||||||||||||||||||||||||||||
34 | 2019 | ScanObjectNN | link | R | 1 | 1 | 1 | 1 | 1 | 15 | 1 | 1 | 1 | 2902 | |||||||||||||||||||||||||||||
35 | 2019 | SemanticKITTI | link | R | 1 | 1 | 1 | 28 | 1 | 1 | 1 | 22 | 43552 | ||||||||||||||||||||||||||||||
36 | 2019 | Structured3D | link | S | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 40 | 1 | 1 | 1 | 1 | 196,0K | 3500 | 21835 | |||||||||||||||||||||||
37 | 2019 | SynthCity | link | S | 1 | 1 | 1 | 1 | 9 | 1 | 367,9M | 1 | 9 | ||||||||||||||||||||||||||||||
38 | 2020 | Campus3D | link | R | 1 | 1 | 1 | 1 | 24 | 1 | 1 | 1 | 1 | 1,0B | 6 | ||||||||||||||||||||||||||||
39 | 2020 | DALES | link | R | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 505,0M | 40 | |||||||||||||||||||||||||||||
40 | 2020 | nuScenes-lidarseg | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 32 | 1 | 1 | 1 | 1 | 1,4B | 1,4M | 1000 | |||||||||||||||||||||||||
41 | 2020 | Toronto-3D | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 78,3M | 1 | 4 | ||||||||||||||||||||||||||
42 | 2020 | Waymo Open | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 23 | 1 | 1 | 1 | 390,0K | 1150 | 230000 | ||||||||||||||||||||||||||
43 | 2021 | 3D-FRONT | link | S | 1 | 1 | 1 | 1 | 6813 | 18797 | |||||||||||||||||||||||||||||||||
44 | 2021 | Agroverse2 | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 30 | 1 | 1 | 1 | 1000 | |||||||||||||||||||||||||||
45 | 2021 | BuildingNet | link | S | 1 | 1 | 1 | 31 | 1 | 1 | 2000 | ||||||||||||||||||||||||||||||||
46 | 2021 | ONCE | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1,0M | 581 | ||||||||||||||||||||||||||||
47 | 2021 | Paris-CARLA-3D | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 23 | 1 | 1 | 60,0M | 12 | ||||||||||||||||||||||||||
48 | 2021 | Paris-CARLA-3D | link | S | 1 | 1 | 1 | 1 | 23 | 1 | 1 | 700,0M | 12 | ||||||||||||||||||||||||||||||
49 | 2021 | PSNet5 | link | R | 1 | 1 | 1 | 1 | 1 | 5 | 1 | 80,0M | |||||||||||||||||||||||||||||||
50 | 2022 | LiSurveying | link | R | 1 | 1 | 1 | 1 | 1 | 1 | 54 | 1 | 1 | 1 | 2,5B | 3 | |||||||||||||||||||||||||||
51 | 2022 | VASAD | link | S | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 6 |
Point Cloud Semantic Segmentation on the S3DIS dataset benchmark.
TABLE 2: Reported results for semantic segmentation task on the large-scale indoor S3DIS benchmark (including all 6 areas, 6-fold cross validation). Ranked in descending order based on mIoU performance.
Declaration: C—convolution-based, G—graph-based, H—hybrid, P—pooling-based, R—RNN-based, T—Transformer-based, V—voxel-based.
Rank | Year | Model Name | Link | Method | mIoU | mAcc | oAcc |
---|---|---|---|---|---|---|---|
1 | 2022 | WindowNorm+StratifiedTransformer | link | T | 77.60 | 85.8 | |
2 | 2022 | PointMetaBase-XXL | link | MLP | 77.00 | - | |
3 | 2022 | PointNeXt-XL | link | MLP | 74.90 | 83.0 | |
4 | 2022 | DeepViewAgg | link | H | 74.70 | 83.8 | |
5 | 2022 | RepSurf-U | link | MLP | 74.30 | 82.6 | |
6 | 2022 | WindowNorm+PointTransformer | link | T | 74.10 | 82.5 | |
7 | 2022 | PointNeXt-L | link | MLP | 73.90 | 82.2 | |
8 | 2020 | PointTransformer | link | T | 73.50 | 81.9 | |
9 | 2022 | CBL | link | C | 73.10 | 79.4 | |
10 | 2021 | BAAF-Net | link | MLP | 72.20 | 83.1 | |
11 | 2021 | SCF-Net | link | MLP | 71.60 | 82.7 | |
13 | 2020 | FG-Net | link | C | 70.80 | 82.9 | |
12 | 2021 | RPNet-D27 | link | MLP | 70.80 | - | |
14 | 2019 | KPConv | link | C | 70.60 | 79.1 | |
15 | 2021 | FastPointTransformer (small) | link | T | 70.30 | - | |
16 | 2018 | PointSIFT | link | MLP | 70.23 | - | |
17 | 2019 | RandLA-Net | link | T | 70.00 | 81.5 | |
18 | 2020 | MuGNet | link | G | 69.80 | - | |
19 | 2020 | PointASNL | link | MLP | 68.70 | 79.0 | |
20 | 2020 | FPConv | link | C | 68.70 | - | |
21 | 2019 | SSP+SPG | link | G | 68.40 | 78.3 | |
22 | 2020 | FKAConv | link | C | 68.40 | - | |
23 | 2019 | ConvPoint | link | C | 68.20 | - | |
24 | 2019 | HPEIN | link | G | 67.82 | 76.26 | |
25 | 2020 | JSENet | link | C | 67.70 | - | |
26 | 2020 | CT2 | link | T | 67.40 | - | |
27 | 2019 | ShellNet | link | MLP | 66.80 | - | |
28 | 2019 | PointWeb | link | MLP | 66.70 | 76.2 | |
29 | 2019 | InterpCNN | link | C | 66.70 | - | |
30 | 2019 | PAG | link | G | 65.90 | - | |
32 | 2018 | PointCNN | link | C | 65.40 | 75.6 | |
31 | 2019 | MinkowskiNet | link | V | 65.40 | - | |
33 | 2019 | DPAM | link | G | 64.50 | - | |
34 | 2019 | PAT | link | T | 64.28 | - | |
35 | 2021 | DSPoint | link | H | 63.30 | 70.9 | |
36 | 2019 | A-CNN | link | C | 62.90 | - | |
37 | 2019 | LSANet | link | MLP | 62.20 | - | |
38 | 2017 | SPG | link | G | 62.10 | 73.0 | |
39 | 2019 | JSNet | link | MLP | 61.70 | 71.7 | |
40 | 2019 | DeepGCN | link | G | 60.00 | - | |
41 | 2019 | ASIS | link | MLP | 59.30 | 70.1 | |
43 | 2018 | Engelmann | link | MLP | 58.27 | 67.77 | |
42 | 2018 | PCNN | link | C | 58.27 | 67.01 | |
44 | 2018 | RSNet | link | RNN | 56.50 | 66.5 | |
45 | 2018 | 3P-RNN | link | RNN | 56.30 | 73.6 | |
46 | 2018 | DGCNN | link | G | 56.10 | - | |
47 | 2019 | PyramNet | link | G | 55.60 | - | |
48 | 2017 | 3DContextNet | link | MLP | 55.60 | 74.5 | |
49 | 2020 | Point-PlaneNet | link | MLP | 54.80 | - | |
50 | 2017 | PointNet++ | link | MLP | 54.49 | 67.05 | |
51 | 2018 | A-SCN | link | MLP | 52.72 | - | |
52 | 2021 | SMS | link | G | 51.74 | - | |
53 | 2018 | G+RCU | link | RNN | 49.70 | 66.4 | |
54 | 2016 | PointNet | link | MLP | 47.71 | 66.2 |